
Improving FAIRness 
with containers
Ana Trisovic
IQSS, Harvard University

A Series of Online Research 
Software Events, Oct 7, 2020



Agenda
▪ A quick summary of FAIR principles
▪ The new role of data repositories
▪ FAIR in practice - a code rerunability study
▪ Overview of new tools
▪ A new solution 



A quick summary of FAIR principles

Findable

Accessible

Interoperable

Reusable



A quick summary of FAIR principles

Findable Describe data in metadata, assign DOI
Metadata record is shared in data repository

Accessible Accessible but not necessarily open
Standard access protocol

Interoperable File format open or proprietary
Description of data elements

Reusable License and usage rights
Data provenance

Wilkinson, Mark D., et al. "The FAIR Guiding 
Principles for scientific data management and 

stewardship." Scientific data (2016)



How data repositories incorporate 
FAIR principles
▪ Dataverse - open-source research data repository 

software
▫ Mandatory citation-level metadata, with DOI
▫ Rich metadata (including domain-specific)
▫ Six levels of data access (open and sensitive)
▫ Compliance with community standards
▫ Data exploration and external tools, etc.



New role of data repositories
▪ Research code is often deposited with data
▪ Typically to enable verification and reproducibility of 

results from published papers
▪ There are 2200+ datasets that contain Python or R 

code only at Harvard Dataverse.



FAIR principles and software best 
practices

Findable Describe code in metadata, provide versions, 
identifiers, contributors, citations etc.

Accessible Make source code open and publicly accessible 
from day one

Interoperable Share code metadata in a community registry

Reusable Adopt a license

Jiménez, Rafael C., et al. "Four simple 
recommendations to encourage best practices in 

research software." F1000Research (2017)



Applying FAIR principles for code

Lamprecht, Anna-Lena, et al. "Towards FAIR 
principles for research software." Data Science 

Preprint (2019)

Findable Describe code in metadata, assign DOI for all 
versions, add it searchable software registry

Accessible Access protocol free, open, universal, allows 
authentication, metadata available

Interoperable Use of broadly applicable language to facilitate 
machine readability, document dependencies

Reusable Usage licenses, add provenance, code metadata 
and documentation to meet community standards



Feasible FAIRness for research code
▪ Code metadata
▪ Licenses for code reuse
▪ Document code dependencies



What’s happening in practice?
▪ What happens when a researcher downloads data 

and code, pre-installs all code dependencies and 
tries to rerun it

▪ We simulate this workflow on AWS, where one 
Dataverse dataset is allocated up to 5 hours to run 
and then, we record a result

▪ Note: Not a reproducibility study!



Results with R code from Dataverse



Most common errors



Python results



What do these results tell us?
▪ Code is not easily reusable

▫ R and Python are not always backward 
compatible

▫ Rerunnability when requirements is present
▫ Fixed paths are common

▪ Lack of support for support for code dependencies



Virtual machines and containers

▪ Capture necessary system dependencies and can 
vastly improve reproducibility and code 
rerunability

▪ Portable and shareable
▪ New tools based on virtual containers



A FAIR black box in data repositories

▪ A FAIR solution: Store exported container image 
files in data repository

▪ With good metadata that documents all that is 
inside - it is FAIR



▪ A FAIR solution: Store exported container image 
files in data repository

▪ With good metadata that documents all that is 
inside - it is FAIR

A FAIR black box in data repositories



Reproducible versus reusable

Button click



Reproducible versus reusable

Button click



Transparency and reusability
▪ Value in viewing research data and code from a 

browser



Improving FAIRness with cutting- 
edge tools
▪ Jupyter Binder
▪ Automatically- 

generated elaborate 
Dockerfiles (100+ 
lines) that will stand a 
test of time



How does this work?

Slide 
created 
by: Tim 
Head



▪ ReproZip - Advanced 
provenance tracking, 
command recording 
and encapsulation

Improving FAIRness with cutting- 
edge tools



▪ ReproZip - Advanced 
provenance tracking, 
command recording 
and encapsulation

Improving FAIRness with cutting- 
edge tools



▪ Singularity - A 
container technology 
that supports HPC

▪ Read-only
▪ ‘Inspect’ for 

metadata and labels

Improving FAIRness with cutting- 
edge tools



Bootstrap: docker
From: python:3.7

%post

…

%help

Hey there! This is how you can run this container:

$ singularity exec container.sif /code/script.py input1

$ singularity inspect -H container.sif

Help within 
container

Slide 
created by: 

Vanessa 
Sochat



▪ EaaSI - Infrastructure 
and services for 
software emulation, 
sharing, documentation, 
discovery and access

▪ Legacy research, support 
for proprietary software

Improving FAIRness with cutting- 
edge tools



Halftime summary
▪ Reproducibility as a problem in science
▪ Long-term preservation for scientific research
▪ Great tools that solve these problems

▫ FAIR
▫ Ease of access for data and code



My view: A good solution for data 
repositories

Looking up to software repositories

Data 
repository

Container 
registry



A solution in practice

Data 
repository

LXD registry

...

Singularity 
registry

Docker 
image 

registry



Another model

Other 
Dataverse

LXD registry

...

Singularity 
registry

Docker 
image 

registry

Harvard
Dataverse

...



A future model

Other 
Dataverse

Multi-
purpose 
registry

Harvard
Dataverse

...



The solution in practice: An 
implementation

Data 
repository

Container 
registry



The solution in practice: An 
implementation

Data 
repository

Container 
registry

Data and code as 
usual

Container image
Container recipe



The solution in practice: A FAIR 
implementation

Data 
repository

Container 
registry

Data and code as 
usual

metadata

Container image
Container recipe



Metadata for containers currently in 
development!



Metadata for containers currently in 
development!



Good outcomes:
▪ Potential to vastly improve reproducibility and 

reusability for small(er)-scale studies
▫ Not too late to encapsulate old code! 

▪ Data repositories would support research 
dissemination for different computing 
infrastructures (cloud or HPC with Singularity)

▪ Easy integration with most reproducibility tools



Caveats
▪ While data repositories 

easily support multiple 
metadata standards, 
setting up a container 
registry may be more 
complicated and 
expensive

...



Potential solutions
▪ Standardized containers for repository users

▫ Same base layers
▪ Containers generated by user-friendly 

reproducibility platforms
▪ Proprietary containers treated as sensitive data



Conclusion
▪ Code on data repositories creates need to 

adequately support it
▪ Many options are possible and FAIR
▪ Investing in container registry would be the best 

long-term solution



Thank you for your 
attention!


